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Truncated power basis expansions and penalized spline methods are demonstrated for estimating nonlinear exposure-response
relationships in the Cox proportional hazards model. R code is provided for fitting models to get point and interval estimates. The
method is illustrated using a simulated data set under a known exposure-response relationship and in a data application examining
risk of carpal tunnel syndrome in an occupational cohort.

1. Introduction

TheCox proportional hazards (PH) model is frequently used
to model survival data or time-to-event data, particularly in
the presence of censored survival times [1]. The hazard, or
instantaneous risk, of an event of interest, typically mortality
or morbidity, is modeled in terms of one or more explanatory
variables relative to an unspecified baseline hazard rate. This
hazard ratio (HR) for the outcome—often interpreted as
a type of relative risk—is the effect of interest and may
be used in epidemiological studies for risk assessment. In
occupational settings, it is common to have an occupational
exposure as one of the explanatory variables in the model
and the association between the outcome and this exposure
is of interest. In this case, the HR, or its logarithm, may be
referred to as the exposure-response relationship. The focus
is thus on estimation of and inferences for this exposure-
response relationship. Nonlinear exposure-response relation-
ships do arise in the analysis of occupational cohorts [2–
7]. An attenuation of the HR at the highest exposures has
been well documented [8] and interpretation of nonlinear
exposure-response relationships is useful in epidemiological
risk assessment [9]. Methods for modeling nonlinearities are
needed in those situations when a linear exposure-response

is not expected or when one desires to formally assess a
nonlinear association.

Consider an occupational cohort with 𝑖 = 1, . . . , 𝑛
individuals on which the time until a given health event of
interest, 𝑡𝑖, is measured. These times may be right censored
if the individual did not have the event of interest during the
study time.This is denoted by an indicator variable, ci, which
takes the value of 1 if the individual had the event and 0 if the
time is censored. The general form of the Cox PH model for
a single covariate is

𝜆 (𝑡 | 𝑥𝑖) = 𝜆0 (𝑡) exp [𝛽𝑥𝑖] , (1)

where 𝜆(𝑡 | 𝑥𝑖) is the hazard function, 𝑥𝑖 is the corresponding
quantitative exposure variable, 𝜆0(𝑡) is the baseline hazard
function, and 𝛽 is the regression coefficient. In this form,
the logarithm of the hazard ratio (HR) is linear, 𝛽𝑥𝑖, and
the exposure-response relationship is described as linear (on
the log-scale). The HR for a given exposure x is exp[𝛽𝑥],
where exp[𝛽] is interpreted as a multiplicative effect when
comparing the hazard (or risk) at exposures one unit apart.

A nonlinear exposure-response relationship can be mod-
eled by including a transformation of xi in the model:

𝜆 (𝑡 | 𝑥𝑖) = 𝜆0 (𝑡) exp [𝑠 (𝑥𝑖)] , (2)
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where 𝑠(⋅) is a known function. Many user-specified choices
exist for this functional form, such as exposure categories
and algebraic functions [10].Thesemethods generally require
user input for exposure category cut-points or the algebraic
expression, such as a logarithmic transformation of the
exposure variable, 𝑥. An alternative to this type of speci-
fication is to use methods which do not impose a priori
shape or categorical constraint on the exposure-response
relationship. Examples of such “smoothing” methods are
polynomial regression splines [11] and penalized splines
[12]. One criticism of smoothing methods is their lack of
interpretable parameters [13], such as the 𝛽 regression coef-
ficient. Nevertheless, interpretable estimates (i.e., HR) with
corresponding confidence intervals can be found directly
from the fitted model, even when using smoothing methods.
We illustrate this interpretation and the use of these methods
(regression and penalized splines) and compare them to
exposure categories and standard algebraic forms in the
context of occupational physical exposure analyses.

Thismanuscript provides a detailed introduction tomod-
eling and interpreting nonlinear exposure-response curves
using these spline functions. We assume familiarity with
the Cox PH model and survival data. The remainder of the
paper is structured in three sections. Section 2 gives the
theoretical Cox proportional hazards model for spline-based
estimates of nonlinear exposure-response associations.These
methods are simultaneously explained and illustrated using
a simulated data set under a known nonlinear exposure-
response relationship. The section ends with an examination
of the interpretation of the estimated HR using point esti-
mates and pointwise confidence intervals. Section 3 gives an
application in which we examine the nature of the association
between job physical demands and incidence of carpal tunnel
syndrome (CTS) in an occupational cohort of 569 individuals
previously analysed by Garg et al. [14]. Final discussion
and comments are in Section 4. An Appendix contains
additional theoretical details for estimation and inferences.
The R software [15] code is available from the corresponding
author.

2. The Cox Proportional Hazards Model for a
Nonlinear Exposure-Response Relationship

2.1. Splines and the Cox Proportional Hazards Model. In the
Cox PHmodel in (2), we use a basis expansion representation
of the exposure-response function 𝑠(𝑥𝑖) based on a linear
combination of known basis functions, 𝑓𝑗(𝑥𝑖),

𝑠 (𝑥𝑖) =
𝐽∑
𝑗=1

𝑏𝑗𝑓𝑗 (𝑥𝑖) . (3)

There is vast literature on using basis functions in linear
models and there are many options for selecting basis
functions to use.The text by Ruppert et al. [16] providesmany
nice examples. A simple basis for a linear exposure-response
relationship would consist of the single function𝑓1(𝑥𝑖) = 𝑥𝑖.
For a quadratic association, the basis functions are𝑓1(𝑥𝑖) = 𝑥𝑖
and 𝑓2(𝑥𝑖) = 𝑥2𝑖 . This can be extended to a polynomial of

degree p by using the p basis functions {𝑥𝑖, 𝑥2𝑖 , 𝑥3𝑖 , . . . , 𝑥𝑝𝑖 }.
Note that we omit the unit basis function, which corresponds
to the intercept term in the model, because in the Cox PH
model setting the intercept is subsumed by the unspecified
baseline hazard function. Estimates in the Cox PHmodel are
relative to the unspecified baseline hazard.

To provide flexibility in capturing local features in the
exposure-response curve, polynomial spline terms may also
be used as basis functions. A spline function is a function,
typically a polynomial, defined on a subinterval of the range
of exposures. Splines allow for estimation of the exposure-
response relationship using a piecewise-defined curve. They
are generally considered to provide more flexibility in esti-
mating nonlinear relationships than polynomials or other
algebraic functions. To define a piecewise linear curve over
four regions in which the slope changes from region to
region, we would use a set of basis functions consisting of
the functions {𝑥𝑖, (𝑥𝑖 − 𝑘1)+, (𝑥𝑖 − 𝑘2)+, (𝑥𝑖 − 𝑘3)+}, where{𝑘1, 𝑘2, 𝑘3} are exposure values at which the slope changes and
are called “knots.” These are user-specified values, similar in
spirit to categorical cut-points where changes in the response
occur. The “+” subscript notation indicates the function
is equal to the expression given in parentheses when that
expression is positive. That is, (𝑥 − 𝑘1)+ = 𝑥 − 𝑘1if 𝑥 >𝑘1 and 0 otherwise. In this way, a nonlinear association can
be estimated by fitting the model in (2) with 𝑠(𝑥𝑖) = 𝑏1𝑥𝑖 +𝑏2(𝑥𝑖 − 𝑘1)+ + 𝑏3(𝑥𝑖 − 𝑘2)+ + 𝑏4(𝑥𝑖 − 𝑘3)+. The standard
maximum partial likelihood method yields estimates of the
coefficients, giving an estimated ln(HR) of 𝑠(𝑥𝑖) = 𝑏̂1𝑥𝑖 +𝑏̂2(𝑥𝑖 − 𝑘1)+ + 𝑏̂3(𝑥𝑖 − 𝑘2)+ + 𝑏̂4(𝑥𝑖 − 𝑘3)+. Higher order
(degree) polynomials can also be used by expanding the
set of basis functions to include all polynomial terms up to
degree p and then K degree p spline functions, defined using
K knots: {𝑥𝑖, 𝑥2𝑖 , 𝑥3𝑖 , . . . , 𝑥𝑝𝑖 , (𝑥𝑖 − 𝑘1)𝑝+, (𝑥𝑖 − 𝑘2)𝑝+, . . . , (𝑥𝑖 −𝑘𝐾)𝑝+}. This set is called the truncated power basis of degree
p [16] and allows for smoother exposure-response estimates
as functions formed from linear combinations of these basis
functions have 𝑝 − 1 continuous derivatives. With small to
moderate numbers of knots, a standard Cox PH model can
be fit to estimate the nonlinear exposure-response curve.

As an illustration, we simulated a data set of 𝑛 = 5000
individuals whose exposure-response relationship shows an
attenuation at the highest exposures; see Figure 1. Specifically,
on the log-scale, the true 𝑠(𝑥) is a quadratic function with
a maximum at an exposure of 𝑥 = 15 units. These data
were generated using the method described in Bender et al.
[17] and Malloy et al. [18]. The exposure variable was set so
that approximately 13% of individuals were unexposed. With
this exposure distribution (displayed in Figure 1) and the
corresponding true exposure-response relationship, approx-
imately 16% of individuals are cases. Survival times were left
skewed with the median case survival time approximately 17
time-units and the median for noncases about 20 time-units.
To give a sense of how survival varies with exposure in this
simulated data set, prior to fitting the Cox PH models, we
created five equally spaced exposure categories and found the
estimated survival functions using theKaplan-Meier estimate
using the survival package [19] in R. The five exposure
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True exposure-response curve for simulated data
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Kaplan-Meier estimate for simulated data
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Figure 1: True exposure-response relationship used to simulate data (a). Histogram of the simulated exposure data (b). Kaplan-Meier
estimates of the survival functions for five exposure groups (c).

categories were a baseline group with no exposure (approx-
imately 13% of observations), those with exposures between
0 and 5 (approximately 46% of observations), between 5
and 10 (32%), between 10 and 15 (8%), and above 15 (1%).
Figure 1(c) shows the estimated survival functions for these

five exposure categories. The baseline/no exposure group has
the highest survival rates while the highest exposed group has
the lowest survival rates, up until a survival time of about 15
time-units, at which point the highest exposed group overlaps
with the 10- to 15-exposure group. This is consistent with the
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Linear truncated power basis functions with knots at quartiles
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Cubic truncated power basis functions with knots at quartiles
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Figure 2: Linear spline (a) and cubic spline (b) basis functions using knots at quartiles of the case exposures (k1 = 3.0, k2 = 5.5, and k3 = 8.3).

generating model, in which there is a drop in the logarithm
of the hazard ratio for these highest exposed individuals
(Figure 1(a)).

We illustrate the spline-based methods for estimating the
exposure-response relationship, s(x), which is the logarithm
of the hazard ratio (ln(HR)). Using a linear truncated power
basis with three knots requires four basis functions, 𝑓1(𝑥) =𝑥, 𝑓2(𝑥) = (𝑥 − 𝑘1)+, 𝑓3(𝑥) = (𝑥 − 𝑘2)+, and 𝑓4(𝑥) =(𝑥 − 𝑘3)+. Figure 2(a) displays these four functions when
the knots were chosen to be at the quartiles of the exposure
distribution of the cases (k1 = 3.0, k2 = 5.5, and k3 = 8.3).
A cubic truncated power basis representation using these
same knots requires six basis functions, 𝑓1(𝑥) = 𝑥, 𝑓2(𝑥) =𝑥2, 𝑓3(𝑥) = 𝑥3, 𝑓4(𝑥) = (𝑥 − 𝑘1)3+, 𝑓5(𝑥) = (𝑥 − 𝑘2)3+, and𝑓6(𝑥) = (𝑥 − 𝑘3)3+ (Figure 2(b)).

Fitting the Cox PH model requires using the basis
function transformations of the exposure variables as the
covariates in the model (and introduces regression coeffi-
cients bj),

𝜆 (𝑡 | 𝑥𝑖) = 𝜆0 (𝑡) exp [𝑏1𝑥𝑖 + 𝑏2 (𝑥𝑖 − 𝑘1)+
+ 𝑏3 (𝑥𝑖 − 𝑘2)+ + 𝑏4 (𝑥𝑖 − 𝑘3)+]

(4)

for the linear truncated power basis model and

𝜆 (𝑡 | 𝑥𝑖) = 𝜆0 (𝑡) exp [𝑏1𝑥𝑖 + 𝑏2𝑥2𝑖 + 𝑏3𝑥3𝑖
+ 𝑏4 (𝑥𝑖 − 𝑘1)3+ + 𝑏5 (𝑥𝑖 − 𝑘2)3+ + 𝑏6 (𝑥𝑖 − 𝑘3)3+]

(5)

for the cubic truncated power basis model. Standard model
fitting methods are used for the Cox PH model (i.e., max-
imum partial likelihood) to obtain the estimates of the
coefficients and hence of the exposure-response curve,

𝑠 (𝑥) = 𝑏̂1𝑥 + 𝑏̂2 (𝑥 − 𝑘1)+ + 𝑏̂3 (𝑥 − 𝑘2)+
+ 𝑏̂4 (𝑥 − 𝑘3)+ ,

𝑠 (𝑥) = 𝑏̂1𝑥 + 𝑏̂2𝑥2 + 𝑏̂3𝑥3 + 𝑏̂4 (𝑥 − 𝑘1)3+ + 𝑏̂5 (𝑥 − 𝑘2)3+
+ 𝑏̂6 (𝑥 − 𝑘3)3+

(6)

for the linear and cubic truncated power basismodels, respec-
tively. For our simulated cohort example, these estimates after
rounding the coefficients to two decimal places are

𝑠 (𝑥) = 0.13𝑥 + 0.03 (𝑥 − 3.0)+ − 0.07 (𝑥 − 5.5)+
− 0.06 (𝑥 − 8.3)+ ,

𝑠 (𝑥) = 0.19𝑥 − 0.04𝑥2 + 0.01𝑥3 − 0.02 (𝑥 − 3.0)3+
+ 0.01 (𝑥 − 5.5)3+ − 0.01 (𝑥 − 8.3)3+ .

(7)

The estimated HR can be found simply by exponentiating,
ĤR = exp[𝑠(𝑥)]. Note that this is the estimated hazard at a
given exposure, x, relative to the baseline hazard, generally
corresponding to x = 0 (i.e., unexposed).

The R software package used here for fitting Cox PH
models and obtaining the estimates is the survival package
[19]. The predict() function in this package uses the mean
exposure value as the reference category for these estimated
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ln(HR) versus x
using linear spline basis with knots at quartiles of case exposures
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ln(HR) versus x
using cubic spline basis with knots at quartiles of case exposures
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Figure 3: Estimated ln(HR) and corresponding pointwise 95% confidence intervals using linear spline (a) and cubic spline (b) basis functions
with knots at quartiles of the case exposures (k1 = 3.0, k2 = 5.5, and k3 = 8.3).

hazard ratios. When there is a single covariate entered as a
linear term, using 𝑥 as the reference value is reasonable as
it provides a comparison of the estimated hazard at a given
exposure relative to the “typical” (i.e., mean) exposure in
the cohort. Often other exposure values may be the desired
reference. In particular, using no exposure as the reference
is also meaningful in the context of occupational hazards
when we want to compare the estimated hazard of death or
a health outcome at a given occupational exposure level to
the hazard when not exposed. Furthermore, when multiple
covariates are entered, such as the four covariates needed for
the linear truncated power basis, this mean reference value is
taken with respect to each covariate entered into the model.
That is, with the four covariates defined as 𝑥1 = 𝑥, 𝑥2 =(𝑥 − 3.0)+, 𝑥3 = (𝑥 − 5.5)+, and 𝑥4 = (𝑥 − 8.3)+, then a side
effect of the predict() function in R is the hazard ratio and
is computed with respect to 𝑥1, 𝑥2, 𝑥3, and𝑥4, which in this
context are the mean values of the basis functions averaged
over all individuals in the data set. This has no meaningful
interpretation for basis function estimates. Appendix A gives
the mathematical details for computing the estimated HR
and ln(HR) with any user-chosen exposure as the reference
based on the output from the Cox PH model fit in the
survival package. It does so for general linear combinations
of coefficients in a Cox PH model but is specifically applied
to the basis expansion context given here.The corresponding
R scripts for the linear truncated power basis expansion are
displayed in Appendix B.

Based on the calculations and code in Appendices A and
B, respectively, the plots in Figure 3 illustrate the estimated
exposure-response relationship using 𝑥 = 0 as the reference
point for the ln(HR). Both the linear and cubic truncated

power basis expansions are illustrated along with pointwise
95% confidence intervals at each exposure value in the data
set. For this simulated data set, both truncated power bases
follow the general trend of increasing relative hazard up until
an exposure of 15 units. In this example, the estimate using a
linear truncated power basis always increases, contrary to the
true exposure-response curve. Conversely, the estimate using
the cubic truncated power basis starts to decrease after about𝑥 = 15.3 units, although it underestimates the ln(HR) relative
to the true exposure-response curve. Both truncated power
bases’ 95% pointwise confidence interval curves essentially
contain the true curve, except for a region between about x
= 11.4 and 𝑥 = 12.4 for the linear truncated power basis.

2.2. B-Spline Basis Functions andPenalized Fits. Although the
truncated power basis functions are relatively easy to visualize
and implement, they do require a choice of the polynomial
degree p, the number of basis functions K + p, and the
locations of the knots. Smoother (continuously differentiable)
estimates are found with higher degree; however, these mod-
els may become numerically unstable. Alternative piecewise-
defined polynomials, called B-splines, overcome this numeri-
cal instability. B-splines are defined recursively through lower
degree spline functions using an algorithm given in de Boor
[20] with further details of their properties given in Eilers
and Marx [21]. Figure 4 illustrates linear (a) and cubic (b)
B-spline basis functions. Both were created using equally
spaced knots but any knots can be specified to define the
basis functions. The scale of the vertical axis is substantially
reduced as compared to the axes for the truncated power basis
functions in Figure 2, thus substantially improving numerical
stability.
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Linear B-spline basis functions with equally spaced knots
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Figure 4: Linear B-spline (a) and cubic B-spline (b) basis functions using equally spaced knots.

Estimated ln(HR) versus x using linear and linear spline functions
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Figure 5: Estimated exposure-response curves on the natural logarithmic scale (logarithm of the hazard ratio) using truncated power basis
functions and B-spline basis functions.

With the knots and degree specified, the B-spline basis
functions are then the known functions 𝑓𝑗(𝑥) used in the
basis expansion representation of the exposure-response
curve 𝑠(𝑥) in (3) above and model fitting may proceed
as described in the previous section. Cubic B-splines are
a reasonable choice for smooth estimates; however, these
estimates may be sensitive to user-selected knot choice. For

example, in Figure 5, the estimate using linear B-spline bases
with equally spaced knots shows a decrease in the ln(HR)
after an exposure of about 𝑥 = 18.0, whereas the linear
B-spline with knots at quartiles does not. A large number
of evenly spaced basis functions can reduce dependency of
user-specified knots but may also result in overfitting or
“noisy” estimates. Penalized splines (psplines, [21]) address
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this problemby combining the B-spline basis expansion and a
penalized fit that balances the need for flexibility of exposure-
response shape against fitting of noise in the data.

Penalized estimates for the unknown parameters in the
basis expansion (3) are found by maximizing a penalized log
partial likelihood, 𝑙(𝑏) − 𝜃𝑃(𝑏), where 𝑙(𝑏) denotes the log
partial likelihood function for the Cox PH model [1], 𝑏 is the
vector of coefficients (𝑏1, . . . , 𝑏𝐽) in (3), 𝑃(𝑏) is an expression
which restricts or penalizes the size of these coefficients, and 𝜃
is a user-specified or data-estimated tuning parameter which
controls the degree of smoothing. A typical penalty term
places a constraint on the curvature of the estimate of 𝑠(𝑥)
via its second derivative:

𝑙 (𝑏) − 𝜃∫ [𝑠󸀠󸀠 (𝑥)]2 𝑑𝑥. (8)

The smoothing parameter 𝜃 in (8) is related to the degrees of
freedom (df), or effective number of parameters, associated
with the estimate 𝑠(𝑥). Having no penalty (𝜃 = 0) results in
all 𝐽 terms in the basis expansion in (3) being used with their
corresponding J coefficients being completely unconstrained,
thus giving df = 𝐽. Given the penalty on the curvature of the
estimate of 𝑠(𝑥), as 𝜃 approaches infinity the df approaches
1, corresponding to a linear term for the exposure variable,𝑠(𝑥) = 𝛽𝑥 [12]. Thus for values of 𝜃 between 0 and infinity,
the degrees of freedom are 1 ≤ df ≤ 𝐽. Data-driven
methods are frequently used to select the degrees of freedom
(or smoothing parameter). Methods such as the Akaike
information criterion (AIC) [22] and an adjusted version of
this called the corrected AIC (AICc) [23] are included in the
pspline() function in the R survival package [19].

As with the truncated power basis expansion method of
Section 2.1, the default predicted HR or ln(HR) in R is mean-
centered relative to each covariate in the model; thus with-
out adjustment these estimates are completely meaningless
when using basis expansion methods. The methods in the
Appendices can be used with penalized spline fits to obtain
meaningful estimated HR values or ln(HR) values with a
user-specified reference exposure. We opt to use a cubic B-
spline basis as these provide reasonably smooth estimates and
are the default choice in the pspline() function. We also
use automatic selection of the degrees of freedom using the
AICcmethod and the default setting for the number of spline
terms (nterm = 15) in the pspline() function in R. Note
that this default corresponds to 17 actual basis functions in
the expansion (after dropping one as it is equivalent to the
redundant constant term subsumed by the baseline). We use
this same setting (nterm = 15) even when preselecting the
desired degrees of freedom (the default is nterm = 2.5*df).

To illustrate penalized estimates, we used our simulated
data with the known quadratic nonlinear exposure-response
curve. We fit penalized splines as described above, under
three conditions: with df selected using AICc, with df = 2,
and with df = 4. The estimates using an unexposed reference
are displayed in Figure 6 along with the corresponding
true exposure-response relationship.TheAICcmethod chose
df = 2.9 and all three estimates indicate an increasing risk up
until approximately 𝑥 = 15 for df = 4, 𝑥 = 16.75 for df = 2.9,
and continuing to increase for df = 2.

Estimated ln(HR) versus x using penalized spline functions
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Figure 6: Estimated exposure-response curves on the natural
logarithmic scale (logarithm of the hazard ratio) using penalized
splines.

2.3. Interpretation of Estimates. Table 1 gives estimated hazard
ratios at exposure values approximately equal to 2.0, 3.0, 4.0,
5.0, 7.0, 9.0, 19.3, 21.1, and 24.0. These roughly correspond
to the quartiles of noncase exposures (1.8, 3.8, and 6.6),
the quartiles of case exposures (3.0, 5.5, and 8.3), and the
maximum overall case exposure (19.3). The two additional
values correspond to higher exposures in the region where
the true exposure-response relationship attenuates and data
become sparse.

These estimated hazard ratios give the estimated hazard
(risk) of the outcome at a given exposure relative to the
hazard when unexposed. For instance, we estimate from
the penalized spline fit using AICc that the hazard of the
event when exposed at a level of 2.0 is 1.3 times that when
unexposed, corresponding to a 30% increase in hazard at
this exposure level. For this simulated data set, the linear
truncated power basis with knots at the quartiles of the
case exposures and the penalized spline fit are comparable;
however while the former does attenuate, it does not decrease
at the highest exposure values.

2.4. Hypothesis Tests with Basis Function Expansions. The
pspline() function in the survival package provides a
chi-square test for a test of the nonlinearity in the penalized
fit. We can conceive of this as a test of the null hypothesis
Ho: 𝑠(𝑥) = 𝑏𝑥 versus the alternative Ha: 𝑠(𝑥) = ∑𝐽𝑗=1 𝑏𝑗𝑓𝑗(𝑥).
The model fit R summary output for the penalized spline fit
using the AICc to get the degrees of freedom is provided in
Appendix C. From this, the test for the nonlinear component
has degrees of freedom of 1.86 and a test statistic value of 11.3,
giving a p value of 0.003.Thus, for these data the nonlinear fit
is warranted. Details of this test can be found in Chapter 5 of
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Table 1: Estimated hazard ratios (HR) and 95% pointwise confidence intervals from two Cox proportional hazard model fits.

Exposure
value 𝑥 Penalized spline function AICc as in

Figure 6
Linear spline function with knots at quartiles of case

exposures as in Figure 5(a) True HR

2.0 1.3 (1.2, 1.5) 1.3 (1.1, 1.6) 1.5
3.0 1.5 (1.3, 1.8) 1.5 (1.1, 2.1) 1.7
4.0 1.8 (1.4, 2.2) 1.8 (1.3, 2.3) 2.0
5.0 2.0 (1.6, 2.5) 2.1 (1.6, 2.7) 2.3
7.0 2.5 (2.0, 3.1) 2.5 (2.0, 3.3) 2.9
9.0 2.9 (2.3, 3.6) 2.9 (2.2, 3.8) 3.5
19.3 3.7 (2.1, 6.3) 4.1 (2.5, 6.5) 4.0
21.1 3.5 (1.7, 7.3) 4.3 (2.5, 7.5) 3.5
24.0 3.3 (1.1, 9.9) 4.7 (2.4, 9.2) 2.6

Martingale residual plot with Loess fits
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Figure 7: Unscaled (a) and scaled (b) plots of the martingale residuals versus exposure (SI) with Loess curves using various degrees of
smoothing (0.4 to 2.0) from a Cox proportional hazards model with all covariates excluding the exposure variable. (b) is scaled to focus on
the Loess curves. The distribution of the exposure variable is given in the rug plot on the 𝑥-axis.

Therneau and Grambsch [24]. Similar hypothesis tests can be
performed using the truncated power basis methods. These
tests are described in Appendix D.

3. Data Application

Garg et al. [14] examined the association between risk of
carpal tunnel syndrome (CTS) and job physical exposure as
measured by the strain index (SI) [25], a semiquantitative
distal upper limb physical exposure quantification method.
The SI method yields a numerical score that is believed to
reflect strain on the distal upper limbs as a result of per-
forming hand work.Their cohort included 429 workers from
10 predominantly manufacturing facilities in the Midwest,
USA. There were 35 incident cases of CTS over the 6-year

study period. Demographic and other covariates were also
measured, further details of which can be found in Garg et
al. [14]. We include in our analyses the same covariates in
Garg et al. [14], which are age transformed using a linear
splinewith knot at 44.3 years, bodymass index, the number of
distal upper extremity musculoskeletal disorders other than
CTS, rheumatoid arthritis, hobbies such as gardening, and
psychosocial measures such as feelings of depression.

An initial assessment of a nonlinear exposure-response
was made using plots of the martingale residuals. To do
so, the Cox PH model with all covariates excluding the
exposure (SI) variable was fit and the martingale residuals
were obtained. These martingale residuals were then plotted
against the exposure variable and Loess curves were added to
the plot. The residual plot is displayed in Figure 7 at full scale
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Table 2: Estimated hazard ratios and 95% pointwise confidence intervals from separate Cox proportional hazard models using the carpal
tunnel syndrome and strain index exposure data.

Exposure value
x Linear Logarithmic Linear spline with

knot at 13.5
Penalized spline function with

df = 2
0.8 1.01

(0.99, 1.03)
1.21

(0.92, 1.59)
1.10

(1.01, 1.20)
1.04

(0.97, 1.11)

6.0 1.10
(0.94, 1.29)

1.88
(0.77, 4.62)

2.09
(1.10, 4.00)

1.35
(0.81, 2.27)

9.0 1.15
(0.91, 1.46)

2.11
(0.73, 6.11)

3.03
(1.15, 7.99)

1.57
(0.78, 3.16)

13.5 1.24
(0.86, 1.77)

2.38
(0.69, 8.19)

5.27
(1.23, 22.57)

1.89
(0.78, 4.60)

18.0 1.33
(0.82, 2.14)

2.60
(0.67, 10.13)

4.85
(1.23, 19.04)

2.12
(0.79, 5.75)

20.3 1.38
(0.80, 2.36)

2.70
(0.66, 11.08)

4.65
(1.23, 17.65)

2.18
(0.78, 6.11)

54.0 2.33
(0.55, 9.84)

3.68
(0.58, 23.35)

2.51
(0.44, 14.42)

2.32
(0.38, 14.15)

and zoomed in on the curves using smoothing parameters
equally spaced from 0.4 to 2.0. Assessment of the Loess
curves suggested a nonlinear exposure-response relationship
for the hazard ratio of CTS with SI. Depending on the degree
of smoothness chosen for the Loess, this association was
quadratic or cubic in nature.The deviance residuals were also
examined and showed similar results (output omitted).

To address the nonlinearity displayed in the residual
plots, fourmodels were examined for these revisited analyses:
two parametric functional forms (linear and a logarithmic
transformation), a linear spline function with a single knot
at the median exposure of SI = 13.5 units (as in [14]), and a
penalized spline fit with 2 degrees of freedom. These models
had similar AIC values that ranged from aminimum of 372.2
(the linear spline with knot at 13.5) to a maximum of 374.6
(the linear). Estimated fits from these models are displayed
in Figure 8 and suggest an increase in the hazard ratio
for exposures up to 13.5 or more, depending on the model
examined. At these exposures, the spline models suggest a
decline in the hazard ratio (the linear spline) or a tapering
off (the pspline) of risk at the upper exposure levels, whereas
the parametric linear and logarithmic transformations both
suggest increasing hazard ratio with increasing risk, with
the logarithmic estimating a higher risk than the linear
transformation.

Table 2 gives estimated hazard ratios and corresponding
confidence intervals at exposure values equal to 0.8, 6.0, 9.0,
13.5, 18.0, 20.3, and 54.0. These correspond to the quartiles
of noncase exposures (6.0, 9.0, and 18.0), the quartiles of
case exposures (9.0, 13.5, and 20.3), and the minimum and
maximum overall case exposures (0.8 and 54.0, resp.). All
estimated hazard ratios are elevated at these exposures (HR> 1.0) although many of the 95% confidence intervals do
contain HR = 1.0, indicating nonsignificant effects at a 5%
significance level if one considers a two-sided hypothesis
test of HR = 1.0. The confidence intervals are widest for the
logarithmic and linear spline models. They are also relatively
wider at the highest exposures for all models, which is

Estimated hazard ratio of CTS versus strain index 
exposure in an occupational cohort study
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Logarithmic transformation
Linear spline with one knot at exposure = 13.5
pspline df = 2
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Figure 8: Estimated exposure-response curves for carpal tunnel
syndrome and strain index in a cohort of 569 workers. Rug plot is
of cases.

not surprising when we examine the distribution of case
exposures, as given on the 𝑥-axis of Figure 8. This indicates
the sparseness of cases at higher exposures and is reflected by
the uncertainty in the estimates at these exposures.

4. Discussion

The analyses of the previous sections illustrate a typical
modeling conundrum in that the models considered all give
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p value function for SI = 13.5
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Logarithmic transformation
Linear with one spline as in Garg et al. 2012
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Figure 9: p value functions for the risk of carpal tunnel syndrome at an exposure of 13.5 strain index units versus unexposed (a) and for the
simulated cohort data at an exposure of x = 4.0 versus unexposed (b).

differing estimated hazard ratios. For the occupational cohort
of the previous section, all examined models provide statisti-
cal evidence of elevated risk (or hazard) for carpal tunnel syn-
drome as SI exposure levels increase relative to unexposed.
The linear spline model used by Garg et al. [14] provides
perhaps the most compelling evidence of elevated risk of
carpal tunnel syndrome atmost all exposures as the pointwise
estimates of the HR are elevated and significantly larger than
one, except for the extreme exposure of 54.0 SI units. A
model selection criterion, such as the AIC, can be used to
select a single, optimal model, of those considered. Here,
the linear spline model is “best” in this sense, but the AIC
values for these six models are relatively similar, suggesting
general consistencywith the data acrossmodels. Even though
the magnitudes of the point and interval estimates differ
between the different models, they are consistent in that they
all provide evidence of increased riskwith increased exposure
except at the highest exposures (compared to a baseline of
unexposed), despite the nonsignificant p values. Ignoring the
effect size evidence, demonstrated in all four of these models,
in favor of only the dichotomous results of significance testing
would obscure this important information [26].

A visual representation of the effect size differences (and
similarities) betweenmodels can be assessed using the p value
functions for each model. The p value function (as described
in chapter 10 of Rothman et al. [27] and in Fraser and
Reid [28]) aids in demonstrating similarities and differences
based on effect size (𝑥-axis) and significance (left 𝑦-axis) or
confidence level (right 𝑦-axis). Examples of p value functions
for the carpal tunnel syndrome cohort data and the simulated
data are in Figure 9. The null hypothesis hazard ratio of HR
= 1 is indicated by the vertical line in each plot and the
corresponding 𝑦-axis value at the which this vertical line

crosses a given function gives the p value for a two-sided test
of this hypothesis. The corresponding confidence interval is
defined by the endpoints given by a horizontal line crossing
the function at this height. We see that the linear exposure
model for the carpal tunnel syndrome cohort suggests a
moderate effect size, yet it is more precise when compared
to the other methods used, some of which are consistent with
large effect sizes.The simulated data example suggests that the
penalized splinemodel and a linear splinemodel have similar
effect sizes. As this is a simulated data set, the magnitude of
the effect has no physical meaning, but for the given exposure
examined (𝑥 = 4.0) the estimated effect sizes, while biased,
are fairly close to the true HR of 2.0 at this exposure.

One caution when using the spline-based methods was
highlighted in Tables 1 and 2 in both the simulated and
application data examples. In particular, we noted previously
in Sections 2.3 and 3 that the confidence intervals are less
precise at the higher exposure values. That is, where the data
were sparse there is more variation in the corresponding
estimates. In Table 2, this is true even in the linear and
logarithmic transformed models, although limited to the
highest exposure examined in this table.This can be amplified
in survival models with a skewed exposure variable fit using
splines as splines have boundary effects [29].Malloy et al. [18]
further emphasized via simulation study that the impact is
dependent on the number of observed cases, as opposed to
the full cohort size.

As an illustration, we simulated two new data sets using
the simulation set-up of Section 2.1. The first simulated data
set is similar to the real-data set of Section 3 and has 𝑛 = 500
individuals and 41 cases. The second data set has 𝑛 = 5000
individuals yet only 40 cases. Estimated exposure-response
curves for these two different simulated data sets are given
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Estimated ln(HR) versus x
using linear and linear spline functions
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Figure 10: Continued.
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Estimated ln(HR) versus x
using cubic spline functions
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Figure 10: Estimated exposure-response curves on the natural logarithmic scale (logarithm of the hazard ratio) for simulated data with 41
cases in 500 observations (a, b, c) and with 40 cases in 5000 observations (d, e, f) using linear, linear splines, and linear B-splines (a, d), cubic
spline and cubic B-splines (b, e), and penalized splines (c, f).

in Figure 10, along with the distribution of case exposures
along the 𝑥-axis. These plots emphasize the impact of the
lower number of cases on the estimated curves. The models
using basis expansions with linear and cubic splines generally
overfit the data, resulting in highly variable estimates across
the exposure distribution. In particular, the linear B-spline
and the cubic spline fits give estimated hazard ratios (on
the logarithmic scale) which decrease substantially after the
highest exposed case.The penalized spline fit with the higher
degrees of freedom (df = 4 in this case) is similarly variable
while the penalized spline with degrees of freedom selected
using AICc underfits the data by giving a linear estimate.The
penalized spline with df = 2 provides a reasonable estimate
to the underlying true hazard ratio. The number of cases is
similar for the two data sets (41 and 40, resp.) and thus the
fits are also similar, despite an order of magnitude difference
in overall sample size (𝑛 = 500 versus 𝑛 = 5000).

Regression modeling often focuses on interpreting coef-
ficient estimates. When exposure-response relationships are
nonlinear and a nonparametric or smoothing method is
used to estimate the relationship, the resulting regression
coefficients are not interpretable. But, these methods do pro-
vide effect size estimates which are interpretable—estimates
at specific exposures of interest. The methods illustrated
here are easily adapted to include a time-varying exposure.
They can also be applied to a covariate of interest which
is not an exposure measure but some other quantitative

covariates, such as a prognostic factor. In these situations,
the reference value of 𝑥 = 0 may not be meaningful, but
the methods are equally valid and applicable with other
reference values of 𝑥. The methods described in this paper
and other similarly structured smoothing methods can be
coded directly, using the enclosed R code as an example.
Alternatively, Desquilbet and Mariotti [30] give SAS macro
for restricted cubic spline functions and the smooth HR
package in R by Meira-Machado et al. [31] implements
penalized splines for modeling nonlinearities. Finally, while
we illustrate a variety of methods for modeling nonlinear
exposure-response relationships, we recommend using these
as part of a comprehensive modeling strategy—such as that
described in Greenland [32] and Greenland [33].This should
include a diagnostic analysis and assessment of assumptions,
paying attention to outliers and influential observations
which may impact the functional form [29].

Appendix

A. Appendix A

Thehazard ratio for a given exposure 𝑥 relative to the baseline
is

HR = 𝜆 (𝑡 | 𝑥)𝜆0 (𝑡) = exp [𝑠 (𝑥)] . (A.1)



Computational and Mathematical Methods in Medicine 13

We use a basis expansion representation for 𝑠(𝑥), 𝑠(𝑥) =
∑𝐽𝑗=1 𝑏𝑗𝑓𝑗(𝑥) for 𝐽 known basis functions 𝑓𝑗(𝑥). Define the 𝐾
by 1 vectors𝐹(𝑥) = [𝑓1(𝑥) ⋅ ⋅ ⋅ 𝑓𝐽(𝑥)]𝑇 and 𝑏 = [𝑏1 ⋅ ⋅ ⋅ 𝑏𝐽]𝑇.
Then 𝑠(𝑥) = 𝐹(𝑥)𝑇𝑏 and the estimated log(HR) is 𝑠(𝑥) =
𝐹(𝑥)𝑇𝑏̂. The hazard ratio for an exposure 𝑥1 relative to an
exposure 𝑥0 is

HR = 𝜆 (𝑡 | 𝑥 = 𝑥1)𝜆 (𝑡 | 𝑥 = 𝑥0) =
𝜆0 (𝑡) exp [𝑠 (𝑥1)]𝜆0 (𝑡) exp [𝑠 (𝑥0)]

= exp [𝑠 (𝑥1) − 𝑠 (𝑥0)] .
(A.2)

This gives an estimated ln(HR) of exposure 𝑥1 relative to an
exposure 𝑥0 of

̂log (HR) = 𝑠 (𝑥1) − 𝑠 (𝑥0) = 𝐹 (𝑥1)𝑇 𝑏̂ − 𝐹 (𝑥0)𝑇 𝑏̂
= [𝐹 (𝑥1)𝑇 − 𝐹 (𝑥0)𝑇] 𝑏̂
= [𝐹 (𝑥1) − 𝐹 (𝑥0)]𝑇 𝑏̂,

(A.3)

where 𝐹(𝑥1)−𝐹(𝑥0) = [𝑓1(𝑥1)−𝑓1(𝑥0) ⋅ ⋅ ⋅ 𝑓𝐾(𝑥1)−𝑓𝐾(𝑥0)]𝑇.
Define this vector of basis function differences as 𝐿 = 𝐹(𝑥1)−𝐹(𝑥0) and the estimated exposure-response can be written as
𝑠(𝑥1)−𝑠(𝑥0) = 𝐿𝑇𝑏̂. A (1−𝛼)100% confidence interval for the

log(HR) has the form 𝐿𝑇𝑏̂±𝑧1−𝛼/2√𝐿𝑇Var(𝑏̂)𝐿, where 𝑧1−𝛼/2is
the 1 − 𝛼/2 cut-off from a standard normal distribution,
Var(𝑏̂) is the estimated variance-covariance matrix of the
estimated coefficients 𝑏̂, and √𝐿𝑇Var(𝑏̂)𝐿 is the standard
error of the estimated log(HR). The coefficient estimates, 𝑏̂,
and the corresponding variance-covariance matrix, Var(𝑏̂),
are generally output by standard software packages. A cor-
responding confidence interval for the HR can be found
either by employing the delta-method (such as that given
on p. 58 of Lehmann and Casella [34]) or by following the
advice of Collett [35] who notes that the distribution of the
estimate of the ln(HR) is closer to a normal distribution than
the distribution of the estimate of the HR and thus suggests
exponentiating the confidence interval for the ln(HR).

The linear truncated power basis coefficients estimates
have a nice interpretation in terms of the estimated change
in the slope of the exposure-response curves that occurs
at the knot points. For instance, the estimated slope for
exposures up until the first knot point of 3.0 corresponds
to the coefficient 𝑏̂1 = 0.1335. The slope is estimated to
change at an exposure of 3.0 by 𝑏̂2 = 0.0260 and remain at
𝑏̂1+𝑏̂2 = 0.1595 up until an exposure of 5.5 at which point the
slope is estimated to change by 𝑏̂3 = −0.0692 and remain at
the resulting estimated slope of 0.0903 up until an exposure
of 8.3. At 8.3, the slope is estimated to further decrease by
𝑏̂4 = −0.0581 to 0.0322 and stay at this slope for the remaining
exposures. For any given exposure, the estimated hazard of an
event is relative to a reference exposure.

The R script for creating the linear truncated power basis
using knots at the quartiles of the case exposures is given in
Appendix B. This is based on input data of the form (𝑥, 𝑐, 𝑡)

which corresponds to the exposure variable (𝑥), event or
censoring indicator (𝑐 = 1 if the event of interest occurred;
otherwise it is 0), and the observed or censored survival time,
t. For the plots to display meaningfully, the data must be
presorted on the 𝑥-variable.
B. Appendix B

TheR script for creating the linear truncated power basis and
fitting the corresponding Cox PH model is as follows:

# invoke the survival package

# it must have been previously
downloaded

library(survival)

# data are (x,t,c)

# find quartiles of cases

q1=quantile(x[c==1])[2]

q2=quantile(x[c==1])[3]

q3=quantile(x[c==1])[4]

# create the linear truncated power
basis with three knots

lin.spline.basis = matrix(nrow=n,ncol=4)

lin.spline.basis[,1] = x

lin.spline.basis[,2] = x-q1

lin.spline.basis[lin.spline.basis[,2] <
0,2] = 0

lin.spline.basis[,3] = x-q2

lin.spline.basis[lin.spline.basis[,3] <
0,3] = 0

lin.spline.basis[,4] = x-q3

lin.spline.basis[lin.spline.basis[,4] <
0,4] = 0

# fit the Cox PH model

coxout = coxph(Surv(t,c)∼lin.spline.
basis,na.action=na.omit,

method="breslow")

# the default fitted values have mean(x)
as the reference

fitloghr = predict(coxout)

# when plotted the default is "mean"
shifted
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# note that the data must be sorted
based on the x-variable for

# plots to display correctly

plot(x,fitloghr,type= 'l',
ylim=c(-1,2),lwd=2)

The R script for computing fitted values at each exposure
value, their corresponding standard errors, pointwise 95%
confidence intervals, and plotting the results is as follows:

# fitted values with x = 0 as the
reference exposure

L = t(lin.spline.basis)

b = coxout$coef # estimated b
coefficients

loghr = t(L) %*%b # these are the
fitted values at each value of x

varb = coxout$var # extract the variance
estimates

varLb = t(L)%*%varb%*%L # the
corresponding variance - covariance
matrix # for the fitted values

SELb = sqrt(diag(varLb)) # the
corresponding standard errors

# now we can create a 95% confidence
interval

lower = loghr-1.96*SELb

upper = loghr+1.96*SELb

# plot the results

plot(x,loghr,type= 'n',ylim=c(0.0,2.8),
xlab="exposure",

ylab="estimated log(HR)",main=
'log(HR) vs. x')

mtext('using linear spline basis with
knots at quartiles of case

exposures')

polygon(c(rev(x),x), c(rev(upper),
lower), col='grey80', border=NA)

lines(x,upper,col=1,lty=2)

lines(x,lower,col=1,lty=2)

lines(x,loghr,lwd=2)

legtxt = c("upper and lower 95%
CI","estimate")

legend(0,2.8,legtxt,lty=c(2,1),
lwd=c(1,2))

C. Appendix C

The R script for fitting a penalized spline with the degrees
of freedom selected using the AICc is below. It assumes the
survival() package is installed and loaded. The data are
of the form: x = exposure variable, t = survival times, c =
event/case indicator. Fixed degrees of freedom can be used
by replacing the df=0 option with the desired degrees of
freedom, say df=2 for a two-degree-of-freedom penalized
spline. When using a set of degrees of freedom, the user
should also then delete the caic=T option.

coxout.aicc = coxph(Surv(t,c)∼
pspline(x,df=0,caic=T),data=subdata,
na.action=na.omit,method="breslow")

print(coxout.aicc)

The corresponding output from the print() command
gives the chi-square test for the nonlinearity on the second
line of the output, here having an observed test statistic value
of 11.3 on 1.86 degrees of freedom, yielding a p value of 0.003.
Note also that the first line of the output gives an estimate
of the linear coefficient, here 0.0902, with a standard error of
0.00899.

Call:
coxph(formula = Surv(t, c) ∼ pspline(x, df = 0, caic = T), data = subdata,
na.action = na.omit, method = "breslow")

coef se(coef) se2 Chisq DF p
pspline(x, df = 0, caic = 0.0902 0.00899 0.00898 100.8 1.00 0.000
pspline(x, df = 0, caic = 11.3 1.86 0.003
Iterations: 10 outer, 29 Newton-Raphson

Theta= 0.996
Degrees of freedom for terms= 2.9
Likelihood ratio test=116 on 2.86 df, p=0 n= 5000

D. Appendix D

Formal tests can also be evaluated for the truncated power
basis methods. As the truncated power bases include a linear
term in their expansion, this corresponds to testing the null

hypothesis Ho: 𝑏2 = 𝑏3 = ⋅ ⋅ ⋅ = 𝑏𝑝+𝐾 = 0 versus the alternative
hypothesis that at least one of these coefficients is nonzero.
That is, Ho: 𝑠(𝑥) = 𝑏1𝑥 versus Ha: 𝑠(𝑥) = 𝑏1𝑥 + 𝑏2𝑥2 + ⋅ ⋅ ⋅ +𝑏𝑝𝑥𝑝 + 𝑏𝑝+1(𝑥 − 𝑘1)𝑝+ + ⋅ ⋅ ⋅ + 𝑏𝑝+𝐾(𝑥 − 𝑘𝐾)𝑝+. A likelihood ratio
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test can be derived to test this “reduced” model in Ho versus
the “full” model in Ha. The test statistic has the form:

𝑋 = −2log[𝐿̂ (reduced)𝐿̂ (full) ]
= −2log [𝐿̂ (reduced)] + 2log [𝐿̂ (full)] ,

(D.1)

where 𝐿̂ denotes the maximized (partial) likelihood function
evaluated at its corresponding maximum likelihood coeffi-
cient estimates.These are evaluated at the estimates fromboth
the reduced model, 𝐿̂ (reduced), and the full model, 𝐿̂ (full).
This test statistic asymptotically has a chi-square distribution
with the degrees of freedom corresponding to the difference
in the number of coefficients between the full and reduced
models. It is necessary that the reduced model is nested
within the full model and can be obtained by constraining
coefficients in the full model.

Thecoxph() function in thesurvival package provides
the maximum log likelihood values for the fitted model
and the null model. R commands and the corresponding
output for formally testing the nonlinear component of the
linear truncated power basis in Figure 5 are given below.

From this, we see that log[𝐿̂(reduced)] = −6588.089 and
log[𝐿̂(full)] = −6580.466 giving a test statistics ofX = 15.28619
and corresponding p value of 0.0016, based on a chi-square
distribution with 3 degrees of freedom (the difference in
the number of coefficients between the two models). Thus,
there is evidence of a nonlinearity in the exposure-response
relationship. The likelihood ratio test can also be used as an
alternative test of the nonlinearity in the penalized spline
models.

The R code and corresponding output for the likelihood
ratio test of nonlinearity in the linear truncated power basis
expansion are as follows:

> coxout.lin.spline = coxph(Surv(t,c) ∼
lin.spline.basis, na.action = na.omit,
method="breslow")

> coxout.lin.spline

Call:

coxph(formula = Surv(t, c) ∼ lin.
spline.basis, na.action = na.omit,
method = "breslow")

coef exp(coef) se(coef) z p
lin.spline.basis1 0.1441 1.155 0.0219 6.593 4.3e-11
lin.spline.basis2 -0.0796 0.923 0.0402 -1.979 4.8e-02
lin.spline.basis3 -0.0258 0.975 0.0746 -0.346 7.3e-01
lin.spline.basis4 -0.4210 0.656 0.3790 -1.111 2.7e-01

Likelihood ratio test=118 on 4 df, p=0
n= 5000, number of events= 804

> coxout.lin. spline$loglik [2]
[1] -6580.446

> coxout.lin = coxph(Surv(t,c) ∼ x,

data=subdata,na.action=na.omit,
method="breslow")

> coxout.lin

Call:

coxph(formula = Surv(t, c) ∼ x,
data = subdata, na.action = na.omit,
method = "breslow")

coef exp(coef) se(coef) z p
x 0.0882 1.09 0.00828 10.7 0

Likelihood ratio test=102 on 1 df, p=0
n= 5000, number of events= 804

> coxout.lin$loglik[2]
[1] -6588.089

> X = -2*(coxout.lin$loglik[2]-coxout.
lin. spline$loglik [2]) # test statistic

> pval = 1-pchisq(X,3)

> data.frame(test.stat=X,pvalue=pval)

test.stat p value
1 15.28619 0.001587718
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